O ct 2 00 6 Pseudo - Manifold Geometries with Applications ̧
نویسنده
چکیده
A Smarandache geometry is a geometry which has at least one Smarandachely denied axiom(1969), i.e., an axiom behaves in at least two different ways within the same space, i.e., validated and invalided, or only invalided but in multiple distinct ways and a Smarandache n-manifold is a n-manifold that support a Smarandache geometry. Iseri provided a construction for Smarandache 2-manifolds by equilateral triangular disks on a plane and a more general way for Smarandache 2-manifolds on surfaces, called map geome-tries was presented by the author in [9] − [10] and [12]. However, few observations for cases of n ≥ 3 are found on the journals. As a kind of Smarandache geometries, a general way for constructing dimensional n pseudo-manifolds are presented for any integer n ≥ 2 in this paper. Connection and principal fiber bundles are also defined on these manifolds. Following these constructions, nearly all existent geometries, such as those of Euclid geometry, Lobachevshy-Various geometries are encountered in update mathematics, such as those of Euclid geometry, Lobachevshy-Bolyai geometry, Riemann geometry, Weyl geometry, Kähler geometry and Finsler geometry, ..., etc.. As a branch of geometry, each of them has been a kind of spacetimes in physics once and contributes successively to increase human's cognitive ability on the natural world. Motivated by a combinatorial notion for sciences: combining different fields into a unifying field, Smarandache introduced neutrosophy and neutrosophic logic in references [14]−[15] and Smarandache geome-tries in [16]. An axiom is said to be Smarandachely denied if the axiom behaves in at least two different ways within the same space, i.e., validated and invalided, or only invalided but in multiple distinct ways. A Smarandache geometry is a geometry which has at least one Smarandachely
منابع مشابه
O ct 2 00 6 Pseudo - Manifold Geometries with Applications ̧
A Smarandache geometry is a geometry which has at least one Smarandachely denied axiom(1969), i.e., an axiom behaves in at least two different ways within the same space, i.e., validated and invalided, or only invalided but in multiple distinct ways and a Smarandache n-manifold is a n-manifold that support a Smarandache geometry. Iseri provided a construction for Smarandache 2-manifolds by equi...
متن کامل37 v 2 2 6 O ct 2 00 0 Riemannian Geometries Steven Lord
In this paper we provide a non-commutative version of the fundamental class [dM ] = [(L 2(M,Λ∗(T ∗M)), d+ d∗, ε)] of a smooth closed Riemannian manifold M . The formulation involves elements of A. Connes’ non-commutative geometry, G. Kasparov’s KK-theory and the standard theory of von Neumann algebras. Using axioms based on [C1], it is proved we can recover the ordinary differential geometry of...
متن کامل. D G ] 1 6 O ct 2 00 4 NON - REDUCTIVE HOMOGENEOUS PSEUDO - RIEMANNIAN MANIFOLDS OF DIMENSION FOUR
A method, due tó Elie Cartan, is used to give an algebraic classification of the non-reductive homogeneous pseudo-Riemannian manifolds of dimension four. Only one case with Lorentz signature can be Einstein without having constant curvature, and two cases with (2,2) signature are Einstein of which one is Ricci-flat. If a four-dimensional non-reductive homogeneous pseudo-Riemannian manifold is s...
متن کاملO ct 2 00 0 A CONVEX DECOMPOSITION THEOREM FOR FOUR - MANIFOLDS
In this article we show that every smooth closed oriented fourmanifold admits a decomposition into two submanifolds along common boundary. Each of these submanifolds is a complex manifold with pseudo-convex boundary. This imply, in particular, that every smooth closed simply-connected four-manifold is a Stein domain in the the complement of a certain contractible 2-complex.
متن کامل0 O ct 2 00 6 TAME GEOMETRIES IN MODEL THEORY by Raf
— In this Proceedings paper we describe a new notion of tame geometry by the author and F. Loeser, named b-minimality, put it in context, and compare it with other notions like o-minimality, C-minimality, p-minimality, and so on. Proofs are given elsewhere.
متن کامل